муниципальное бюджетное общеобразовательное учреждение «Сасовская средняя общеобразовательная школа №3»

«УТВЕРЖДАЮ»

Директор МБОУ Сасовская СОШ №3

_Зайцева О.С

«30» abusend

2024 г.

Дополнительная общеобразовательная общеразвивающая программа естественнонаучной направленности

«Физика вокруг нас»

Возраст обучающихся 14-18 лет Срок реализации 2 года

Педагог дополнительного образования Вольнова Светлана Юрьевна

Сасово

2024 г.

РАЗЛЕЛ 1.

«Комплекс основных характеристик дополнительной общеразвивающей программы: объем, содержание, планируемые результаты»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Направленность программы.

Дополнительная общеобразовательная общеразвивающая программа «Физика вокруг нас» имеет естественнонаучную направленность и предназначена для углубления знаний и совершенствования умений в области физики.

Актуальность программы заключается в прививании интереса у школьников к точным наукам, начиная уже с основной школы. Правильное понимание физики и методов ее изучения позволят учащемуся сделать осознанный выбор дальнейшего направления обучения. Актуальность предлагаемой программы определяется так же запросом со стороны муниципалитета на программы естественнонаучного развития школьников.

Новизна данной программы выражена в подходе в обучении, при котором физика рассматривается как средство развития логического мышления. Эффект новизны отражается в содержании, методах, формах, приемах обучения.

Педагогическая целесообразность программы в том, что она дополняет школьный курс физики практической деятельностью, содержание занятий также углубляет базовые знания обучающихся и уделяет больше внимания некоторым разделам предмета, которым в школьном курсе уделено мало внимания.

Отличительные особенности программы: К отличительным особенностям программы можно отнести тот факт, что она способствует развитию и поддержанию интереса у учащихся к деятельности физического направления, дает возможность расширить и углубить знания и умения, полученные в процессе обучения, создает условия для всестороннего развития личности.

Адресат программы:

Данная программа сориентирована на детей 14 – 18 лет.

Уровень программы, объем и срок ее реализации:

Данная общеобразовательная общеразвивающая программа относится к ознакомительному уровню, рассчитана на 2 года обучения (68 часов).

Форма обучения: очная.

Режим занятий: занятия проводятся 1 раз в неделю по 1 академическому часу, академический час —40 минут.

Особенности организации образовательного процесса: Программа предназначена для учеников, интересующихся физикой и физическими явлениями.

Цель программы: формирование научного мировоззрения, опыта научноисследовательской деятельности, развитие у обучающихся познавательных интересов.

Задачи программы:

Образовательные:

- развивать и поддерживать познавательный интерес к изучению физики как науки;
- знакомить учащихся с последними достижениями науки и техники;
- расширить и углубить основы знаний обучающихся в области естественных наук.

Воспитательные:

- способствовать воспитанию убежденности в возможности познания законов природы, в необходимости разумного использования достижений науки и техники, самостоятельности при принятии решений и способности к аргументированному доказательству собственных гипотез;
- формировать навыки сотрудничества.

Развивающие:

- развивать умения и навыки учащихся самостоятельно работать с научно-популярной литературой, умения практически применять физические знания в жизни;
- развивать естественнонаучные компетенции и исследовательские навыки учащихся.

Содержание программы Учебный план

No	Тема раздела	Количество часов		
		Всего	Теория	Практика
1	Научные методы познания.	2	1	1
	Экспериментальные методы			
	исследования природы.			
2	Механические явления. Основы	21	9	12
	кинематики и динамики.			
3	Давление твёрдых тел, жидкостей и	6	3	3
	газов.			
4	Тепловые явления	8	3	5
5	Электромагнитные явления	17	7	10
6	Световые явления	8	4	4
7	Механические колебания и волны.	5	2	3
	Звук			
8	Обобщение «Физика – это интересно».	1	0	1
	Итого	68	29	39

Содержание учебного плана

1. Научные методы познания. Что изучает физика? Материя, и ее виды. Явления природы. Наблюдение — первый метод познания природы. Физическое наблюдение, его роль в науке и его недостатки. Эксперимент в науке и его суть. Основные требования к физическому эксперименту. Классификация физического эксперимента. Основные функции эксперимента и его преимущество перед наблюдением. Измерения и виды измерений. Измерительные приборы. Погрешности измерений.

Практические работы:

- 1. Наблюдение теплового расширения газов и жидкостей.
- 2. Наблюдение кипения воды в разных условиях.
- 3. Исследование скорости испарения воды при разных условиях (дома).
- 4. Исследование процесса образования сосулек (дома).

2. Механические явления. Основы кинематики и динамики.

Путь и перемещение. Мгновенная скорость. Методы измерения скорости тел. Скорости, встречающиеся в природе и технике. Ускорение. Равномерное и равноускоренное прямолинейное движение. Ускорение свободного падения.

Графики зависимости кинематических величин от времени в равномерном и равноускоренном движениях. Движение по окружности с постоянной по модулю скоростью. Центростремительное ускорение. Период и частота. Масса. Сила. Второй закон Ньютона. Сложение сил. Третий закон Ньютона. Закон всемирного тяготения. Определение масс небесных тел. Движение под действием силы тяжести с начальной скоростью. Движение искусственных спутников. Расчет первой космической скорости.

Сила упругости. Закон Гука. Вес тела, движущегося с ускорением по вертикали. Численные методы решения задач механики.

Сила трения. Сила Архимеда.

Импульс тела. Закон сохранения импульса.

Механическая работа. Потенциальная и кинетическая энергия. Закон сохранения энергии в механических процессах. Простые механизмы. КПД механизмов.

Лабораторные работы:

- 1. Измерение коэффициента трения скольжения
- 2. Работа силы трения
- 3. Исследование зависимости силы трения скольжения от силы нормального давления
- 4. Зависимость силы упругости от степени растяжения пружины
- 5. Определение выталкивающей силы.
- 6. Определение работы силы упругости при подъеме груза с помощью неподвижного блока

3. Давление твёрдых тел, жидкостей и газов.

Давление. Давление твердых тел. Давление газа. Объяснение давления газа на основе молекулярно-кинетических представлений. Передача давления газами и жидкостями. Закон Паскаля. Сообщающиеся сосуды. Атмосферное давление. Методы измерения атмосферного давления. Барометр, манометр, поршневой жидкостный насос. Закон Архимеда. Условия плавания тел. Воздухоплавание.

4. Тепловые явления

Образование ветров. Тепловое движение. Термометр. Связь температуры со средней скоростью движения его молекул. Внутренняя энергия. Два способа изменения внутренней энергии: теплопередача и работа. Виды теплопередачи. Количество теплоты. Удельная теплоемкость вещества. Удельная теплота сгорания топлива. Испарение и конденсация. Кипение. Влажность воздуха. Психрометр. Плавление и кристаллизация. Температура плавления. Зависимость температуры кипения от давления. Объяснение изменения агрегатных состояний на основе молекулярно-кинетических представлений. Преобразования энергии в тепловых двигателях. Погода и климат

Лабораторные работы:

1. Исследование изменения со временем температуры остывающей воды.

5. Электромагнитные явления

Электризация тел. Электрический заряд. Взаимодействие зарядов. Два вида электрического заряда. Электрон. Строение атома. Ион.

Электрический ток. Источники электрического тока. Электрическая цепь. Проводники и изоляторы. Действия электрического тока. Работа и мощность тока. Закон Джоуля-Ленца. Преобразование энергии при нагревании проводника с электрическим током. Электричество в быту. Производство электроэнергии. Меры предосторожности при работе с электрическим током. Природное электричество.

Взаимодействие магнитов. Электромагнитные явления. Применение электромагнитов.

Демонстрации:

- 1. Электризация различных тел.
- 2. Взаимодействие наэлектризованных тел. Два рода зарядов.
- 3. Определение заряда наэлектризованного тела.
- 4. Составление электрической цепи.
- 5. Нагревание проводников током.
- 6. Взаимодействие постоянных магнитов.
- 7. Расположение магнитных стрелок вокруг прямого проводника и катушки с током.

Лабораторные работы:

- 1. Электризация различных тел и изучение их взаимодействия.
- 2. Сборка электрической цепи. Наблюдение действий электрического тока.
- 3.Зависимость напряжения на концах проводника от силы электрического тока.
- 4. Определение мощности электрического тока
- 5. Изучение взаимодействия магнитов. Определение полюса немаркированного магнита.
- 6. Сборка электромагнита и изучение его характеристик.

6. Световые явления

Прямолинейное распространение света. Луч. Образование тени. Лунные и солнечные затмения. Отражение света. Закон отражения света. Зеркала плоские, выпуклые и вогнутые. Преломление света. Линза. Построение в линзе. Способность видеть. Дефекты зрения. Очки. Фотоаппарат. Цвета.

Смешивание цветов.

Демонстрации:

- 1. Прямолинейное распространение света.
- 2. Образование тени и полутени.
- 3. Отражение света.
- 4. Законы отражения света.
- 5. Изображение в плоском зеркале.
- 6. Преломление света.
- 7. Разложение белого света в спектр.
- 8. Ход лучей в линзах.
- 9. Получение изображений с помощью линз.

Лабораторные работы:

- 1. Проверка закона отражения света.
- 2. Наблюдение преломления света.
- 3. Определение оптической силы линзы

7. Механические колебания и волны. Звук

Амплитуда, период, частота. Формула периода колебаний математического маятника. Колебания груза на пружине. Превращения энергии при колебательном движении. Длина волны. Связь длины волны со скоростью ее распространения.

Лабораторные работы:

1. Зависимость периода свободных колебаний пружинного маятника от массы

груза

- 2. Определение частоты свободных колебаний нитяного маятника
- 3. Зависимость периода свободных колебаний нитяного маятника от длины
- 4. Измерение периода свободных колебаний нитяного маятника

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ:

Предметные

В результате реализации программы обучающиеся будут знать:

- основные физические термины;
- свойства тел по размеру, форме, веществу;
- примеры различных физических явлений.

В результате реализации программы обучающиеся будут уметь:

- работать с приборами общего назначения: весами, барометром, термометром, ареометром, вольтметром, амперметром и другими;

- действовать в соответствии с предложенным алгоритмом;
- выделять положительное и отрицательное воздействие человека на природу.

Метапредметные

В результате реализации программы обучающиеся будут знать:

- как работать с информацией: поиск, запись, восприятие, в том числе средствами ИКТ;
- как применять правила и пользоваться инструкциями;
- сущность алгоритмических предписаний;
- физические модели, знаки, символы, схемы.

В результате реализации программы обучающиеся будут уметь:

- выбирать способы деятельности в соответствии с поставленной задачей и условиями её реализации;
- адекватно оценивать правильность или ошибочность выполнения учебной задачи;
- организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;
- работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов.

Личностные

У обучающихся будут развиты следующие личностные качества:

- способность к эмоциональному восприятию физических объектов, задач, решений, рассуждений;
- способность продолжать изучение физики, осуществляя сознательный выбор своей индивидуальной траектории учения.

РАЗДЕЛ 2. «Комплекс организационно-педагогических условий, включающий формы аттестации»

Календарный учебный график программы «Физика вокруг нас»

Количество учебных недель	68 недель
Дата начала реализации программы	01 сентября 2024 года
Дата окончания реализации программы	30 мая 2026 года
Режим занятий	1 раз в неделю по 1
	академическому
	часу

Календарный учебный график

	график		
№	Дата	Тема занятия	Теория _{то} Пракрака ия ка
		ВЕДЕНИЕ 2 ч.	
1-2		Научные методы познания. Экспериментальные методы исследования природы.	1 1
l		Механические явления	21 ч
3		Механическое движение. Путь и перемещение	1
4		Равномерное движение.	1
5		Равноускоренное движение. Ускорение	1
6		Решение расчетных задач.	1
7-8		Решение графических задач.	2
9		Свободное падение.	1
10		Виды сил.	1
11		Закон всемирного тяготения.	1
12- 13		Законы Ньютона.	1 1
14- 15		Простые механизмы. КПД простого механизма.	1 1
16- 17		Импульс. Закон сохранения импульса.	1 1

18- 20	Энергия. Закон сохранения энергии.	1	2
21	Л.р.Исследование зависимости силы трения скольжения от силы нормального давления Л.р. Измерение коэффициента трения скольжения		1
22	Л.р. Зависимость силы упругости от степени растяжения пружины Л.р. Работа силы трения		1
23	Л.р. Определение работы силы упругости при подъеме груза с помощью неподвижного блока		1
7	Давление твёрдых тел, жидкостеі	й и газов - 6 ч	
24	Давление. Давление твердых тел	1	
25	Давление газа. Объяснение давления газа на основе молекулярно-кинетических представлений.	1	
26	Передача давления газами и жидкостями. Закон Паскаля.		1
27	Атмосферное давление. Методы измерения атмосферного давления. Барометр, манометр, поршневой жидкостный насос.		1
28-	Закон Архимеда. Условия	1	1
29	плавания тел. Тепловые явления – 8 ч		
	1 силовые явления — о ч		
30	Внутренняя энергия и способы ее изменения.	1	
31- 33	Уравнение теплового баланса. Л.р.Исследование	1	2

	изменения со временем		
	•		
	температуры остывающей		
	воды.		
34-	Решение задач на фазовые		2
35	переходы.		
36-	Погода и климат.	1	1
37	Влажность воздуха.		
	•		
	Электромагнитные -		
	явления- 17 ч		
38	Электростатика.	1	
39-	Электрический ток. Закон	1	1
40	Ома для участка цепи.		
	Виды соединения	1	2
41-	проводников. Смешанное		
43	соединение.		
44-	Работа и мощность тока.	1	2
46	Закон Джоуля –Ленца.		
47-	Электричество в быту.	1	1
48	Производство		
	электроэнергии.		
49	Природное электричество.	1	
	природное знактри постро		
50	Взаимодействие магнитов.		1
	Взаимоденетые магнитов.		
51-	Электромагнитные явления.	1	2
53			
54	Применение		1
	электромагнитов		
	Световые явления-8 ч		
55	Распространение света	1	
56-	Законы отражения и	1	2
57	преломления света		
58-	Линзы. Построение	1	2
60	изображения в линзе	1	_
30	11300 parketiin b iiiiise	1	L

61	Способность видеть. Дефекты зрения. Очки. Фотоаппарат.	1	
62	Цвета. Смешивание цветов	1	
	Механические колебания и волны. Звук - 5 ч		
63- 65	Маятники. Превращение энергии при колебаниях.	1	2
66- 67	Волны. Виды волн. Звуковые волны.	1	1
68	Физика – это интересно	0	1

Условия реализации программы

Материально-техническое обеспечение

Занятия проходят в кабинете физики, который полностью оснащен необходимой мебелью, доской, стандартным набором лабораторного оборудования (наборы для демонстрации опытов). Условия для занятий соответствуют санитарно-гигиеническим нормам. Кабинет физики соответствует нормам СанПин, пожарной безопасности, с хорошим освещением и возможностью проветривания, оснащен мебелью, соответствующей росто-возрастным особенностям детей. Оборудование рабочего места обучающегося подобрано с учетом возраста. Стулья ученические, деревянные.

Кабинет оснащён компьютером, проектором, что позволяет использовать для занятий видеофильмы, презентации, различные компьютерные программы (из медиатеки школы). В кабинете имеются веб-камера, документ-камера.

- Лабораторный набор «Механические явления».
- Лабораторный набор «Электрические явления».
- Лабораторный набор «Геометрическая оптика».
- Лабораторный набор «L-micro».
- Справочные материалы по физике.

Печатные пособия

- Таблицы по физике для 7-11 классов.
- Сборники задач

Дидактические материалы

Наглядные пособия:

- фотографии физических экспериментов по электродинамике;

- рисунки с изображением графиков движения тел;
- таблицы: мер и весов, плотности веществ, физических констант;
- иллюстрации физических явлений.

Информационное обеспечение

- 1. Учебно методическая литература по физике и астрономии.
- 2. Видеофильмы.
- 3. Компьютер мультимедийный с выходом в интернет, программное обеспечение для компьютера.

Требования к педагогическим работникам.

Дополнительную общеобразовательную общеразвивающую программу естественнонаучной направленности «Физика вокруг нас» могут реализовывать педагоги, соответствующие следующим требованиям:

- высшее профессиональное образование
- педагогический стаж работы более 3 лет.

Формы аттестации

по итогам освоения программы «Физика вокруг нас»

Формами отслеживания и фиксации результатов освоения программы будут результаты промежуточных тестирований и лабораторных работ.

Оценочные материалы

В завершении каждой темы детям предлагается итоговое тестирование, лабораторная работа или зачет по теории, в результате которой знания оцениваются зачет — незачет и заносятся в «Сводную таблицу результативности». В конце учебного года педагог проводит общий анализ.

Шкала оценки. Если учащийся по итогам года набрал Менее 40% - низкий уровень 40-80% - средний уровень 80-100% - высокий.

Педагогические технологии, используемые в программе:

- здоровьесберегающие технологии;
- технология проектной деятельности:
- технология исследовательской деятельности

- информационно-коммуникационные технологии;
- личностно-ориентированные технологии;
- игровая технология.

Дидактические материалы, используемые в программе:

- презентации;
- обучающие игры;
- карточки;
- рисунки; схемы, таблицы; графики.

Список информационных источников

Литература для учащихся:

- 1. Гуревич А.Е., Исаев А.Д., Понтак Л.С. «Физика–Химия». М.: Дрофа, 2004.
- 2. Энциклопедия «Физика». Ч. 1, 2. М.: Аванта+. 2005.
- 3. Энциклопедия «Астрономия». М.: Аванта+. 2005.
- 4. Пёрышкин А.В. «Физика-8», «Физика-9». М.: Дрофа, 2013.
- 5. Лукашик В.И. Сборник задач по физике-7–9. М: Просвещение, 2015.
- 6. Остер Г. Физика. M.: Росмэн, 2004.
- 7. Перельман Я.И. Занимательная физика. Ч. 1, 2. М.: Наука, 2005.
- 8. Тульчинский М.Е. Качественные задачи по физике. 6–7 классы. М.: Просвещение, 2004.

Литература для учителя:

- 1. Уокер Дж. Физический фейерверк. М.: Мир, 2006.
- 2. Смирнов А.П., Захаров О.В. Весёлый бал и вдумчивый урок: Физические задачи с лирическими условиями. М.: Кругозор, 2004.
- 3. Леонович А.А. Физический калейдоскоп. М.: Бюро Квантум, 2003.
- 4. Лукашик В.И. Физическая олимпиада. М.: Просвещение, 2004.
- 5. Усольцев А.П. Задачи по физике на основании литературных сюжетов. Екатеринбург: У-Фактория, 2003.
- 6. Гальперштейн Л. Здравствуй, физика! М.: Детская литература, 2002.
- 7. Гальперштейн Л. Занимательная физика
«. М.: Росмэн, 2003.

Компьютерные программы и энциклопедии на CD-ROM: ;

Открытая физика. Версия 2.5;

Видеозадачник по физике;

Умники (интерактивная физическая энциклопедия для 5-8 классов).

Мультимедийная библиотека: виртуальные физические лаборатории "Оптический конструктор"